基于深度学习的钢板视觉识别应用研究

Research on Visual Recognition Application of Steel Plate Based on Deep Learning

  • 摘要: 为提升钢卷生产的智能制造水平,广州某钢厂的镀锌板生产线通过技术改造增加了一台基于视觉引导的取样机器人用于送检钢板的自动贴标和搬运作业。以lines_gauss函数为核心开发了一套对钢板进行边缘检测以实现定位的视觉系统,虽然能满足多数场景下的钢板中心坐标计算,但仍未达到99%以上的识别准确率。通过利用ResNet-18深度卷积神经网络和Faster R-CNN对象检测模型增强视觉系统对钢板边缘的检测能力,解决光照不均匀、不同镀层钢板反光率差异大、堆积钢板边缘不易检测等因素引起的钢板识别定位准确率难以提高的问题。

     

    Abstract: In order to improve the intelligent manufacturing level of steel coil production,the galvanized sheet production line of a steel plant in Guangzhou add a sampling robot based on visual guidance for automatic labeling and handling of steel plates.The vision system based on lines_gauss function is developed for edge detection of steel plate.Although it can satisfy the calculation of center coordinates of steel plate in most scenarios,the recognition accuracy rate is still not above 99%.The ResNet-18 deep convolutional neural network and Faster R-CNN object detection model are used to enhance the detection ability of the visual system to the edge of the steel plate,which can solve the problems caused by uneven illumination,large differences in the reflectance of different coated steel plates,and difficulty in detecting the edge of stacked steel plates.

     

/

返回文章
返回